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A Generalized Interpolation Algorithm 

By A. C. R. Newbery 

Abstract. An interpolation algorithm is derived, which will construct an (n + 1)-point 
interpolapt based on any sequence of interpolatory functions that can be defined by a 
three-term linear recursion. By suitable parameter choice, a single algorithm can be made 
to interpolate in terms of the classical polynomial sequences or in terms of trigonometric 
or hyperbolic series etc. An analysis of truncation error is included. 

Given n + 1 points (x,, f,) with the xi distinct, and given n + I functions o j(x), 
the interpolation problem consists in calculating n + 1 weights wj such that 

n 

(1) At = E2 wii(xi), i = 0O1, *Is n. 
1-0 

Apart from the familiar Lagrangian case, where Oj(x) = x2, the commonest cases 
involve basis functions Oj which obey a three-term recursion of the form 

(2) '1+i - (g(x)-- a,)4j - flj , i = 0, 1,a, 

where the a,, 3,B are given scalars, g(x) and 4o(x) are given functions, and 0-,(x)_ 0. 
This case includes direct interpolation in terms of the classical polynomials of 
Legendre, Chebyshev, etc.; it also includes interpolation in terms of sine and cosine 
polynomials and their hyperbolic analogs. We now wish to construct an algorithm 
for which the input data are vectors with components xi, f ,, a,, fj3, 4O(xj,, g(x,) and 
the output vector has components w, in accordance with (1), (2). The subscripts i, j 
run through the range [0, n] with #o = 0. 

The development of the algorithm will follow the same pattern as used in [1] for 
the special case of sine series interpolation. First, we develop a sequence of functions 
I r(x)I, k = 1, 2, , with the properties that (a) lr,(x) is a linear combination 

of the 4 ,(x) for j ? k with the coefficient of 4, being unity, (b) lrk(xi) = 0 for i < k 
and for no other subscript i. In order to meet these requirements, we set 7r,(x) = 

1- (g(xo) - a)oo = (g(x) - g(xo))Oo. (It follows from (2) that these two formula- 
tions are equivalent.) Subsequently, 7r,+1(x) = (g(x) - g(xk))7rk(x). The fact that (2) 
defines a way of expressing gas as a linear combination of 5 j +, q i, -I implies that 
Irk+I is of the required form. At this stage, therefore, we may conclude that for each 
k there exist coefficients p ,(k) such that 

k-I k 

(3) '7rk(x) = H (g(x) - g(xj))4O(x) = E pjj(X), Pk = 1. 
-o 0-O 

In order to meet the requirement that 7rk(x) should not vanish at any node xi other 
than those for which i < k, it is sufficient to impose the restrictions that 40(x;) 5 0 
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at all nodes and g(xi) # g(x,) for all distinct nodes x,, xi. These are the minimum 
restrictions under which the interpolant is constructible. Let Lk(x) denote a linear 
combination of the basis functions O0, '1, * * *, OkA such that Lk(x,) = if, for i ! k. 
The Lk are constructible, as is easily verified, by the following recursion: 

(4) Lo(x) = f0ok(x)/ko(xo), bk = [fk+l - Lk(Xk+1)]/7rk+1(xh+l), 

L4+1(x) = Lk(x) + bklrk+l(x), k = 0, 1, - * * , n - 1. 

In executing this algorithm, it is recommended that the evaluation of 7rk+l(Xk+l) in 
the expression for bk should be performed using the product form (3), while one 
would need to use the summation form in (3) when deriving the +-polynomial form 
of L4+, from that of Lk. This summation form has been stated explicitly for 7r1; 

thereafter, each one may be computed as follows: Let irk = Jo pioi(x) and irk+ = 

*+o pqOj(x), then 

(5) py = (a, - g(Xk))pi + Pi-l + Pi+lPi+l, i = 0, 1, , k + 1, 

where the undefined coefficients pk- 1, Pk+ 1, and Pk+2 are set equal to zero. The evalua- 
tion of Lk(x) : X._o qj~i(x) for x = Xk+l, which is needed to compute bk in (4), 
may be done in either of two ways: First, if a complete matrix of quantities 4 1(x,) is 
available, then the computation is simply a scalar product of two (k + 1)-dimensional 
vectors. On the other hand, if this matrix is not available and is not needed for other 
purposes, it would be a waste of time and storage to compute it specifically for this 
job. Instead, one should recognize that evaluating Lk is formally equivalent to evalu- 
ating a weighted sum of orthogonal polynomials, and a suitable algorithm adapted 
from [3, p. 70] is: 

(6) tk = qk, tk-1 = qk-1 + tk(g(X) k-1), 

tr = q, + tr+1(g(x) - aC) - j3r+1tr+2, r = k - 2, k - 3, , 0. 

The value of Lk(x) is then to04(x). 
In order to derive an error term associated with our (n + 1)-point generalized 

interpolation algorithm, it will be necessary to make some more restrictive assump- 
tions on the nature of g(x), +b0(x). Let I be the continuous interval on the x-axis over 
which interpolation is required; thus I includes all the x, and any other x-value at 
which the interpolant may be evaluated. We require that f, g, 40 be differentiable at 
least n + 1 times in I and that neither g' nor 00 vanishes in I. It will be observed that 
these conditions imply the weaker conditions that were earlier stated to be necessary 
and sufficient for the construction of the interpolant. The (n + 1)-point interpolant 
Ln(x) is therefore constructible, and by examination of algorithm (6), we see that 
Ln(x) Pn(g)0o(x), where Pn is an algebraic polynomial of degree n in the variable 
g = g(x). Writing gi = g(xi), we have therefore implicitly constructed a polynomial 
P. such that, at all nodes xi, 

f(xi) = L.(xi) = P.(gi)O(xi) 

Equivalently, writing g(x) = z, we have constructed a polynomial P, such that 

(7) P.(z) = f(g (z))1O0(g (z)) 

at every point zi = g(x,). The fact that this is a well-defined expression follows from 
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our assumption that g', q6 do not vanish in L The expression for the internodal error 
E(z) in (7) is the standard Lagrangian error term [2, p. 63]: 

E(z) =f(g (Z))1q5O(g (Z - Pn(Z) 
(8) n n+1 

(n +I)!t~o(Z 2). Z [f(g 1(Z))1OO(g '(Z))1.-r, 

where g-'(r) E I. 
In order to investigate the differential expression in (8), we define Q,(x) = 

(d/dz)7U(x)/lko(x)]. We have Qo = f(x)/co(x), Q, = (0ot' - Xbf)/g'l2. If we let 
Q. = N./g'2-', 4+ 1, r = 1, 2 * , then 

N, = N'g'40 - N,(2r - l)g"4,o + (r + l)g'40. 

The differential expression N,. is linear in f but its coefficients involve nonlinear 
combinations of 40, g' and their derivatives. We conclude that Q,,+ which is the 
differential expression in (8), is N,+1/(g'2f +b 4+2). Actually, the error in our interpola- 
tion is not E(z) but E(x), where 

(9) 1?(x) = 4o(x)E(z) - k(X) f (g(x)- g(xi))N-+l ( (v) 
(n + 1) -o 

where N.+, is evaluated at some point q in L Although the structure of Nn+, is too 
complicated to permit any clear practical insights, there is still something to be 
learned from the form of the error term (9). At first, it appears that if g' or 40 becomes 
small anywhere in I, then large errors are to be expected; however, it may be noted 
that if 4o and g are multiplied by constants p, q, the error remains invariant. This can 
be seen by following our derivation, and it is also evident geometrically. We conclude 
that large errors may be expected if g' is small relative to g or relative to its higher 
derivatives (which are implicit in Nn+,) anywhere in I; similarly, the smallness of +0 
relative to its derivatives has to be seen as a danger signal. For instance, if one is 
constructing a cosine series interpolant, one normally takes 40 = 1, g = 2 cos x. If 
the interval I contains points X such that sin X is small, then we run into one of the 
above mentioned problems. If we try to construct a sine series interpolant, then we 
encounter both the above problems. 

So far we have assumed that we were required to construct an explicit approxi- 
mation to f(x) in terms of the basis functions h,. In the simpler case where all that 
is needed is an algorithm for pointwise interpolation, the simplest procedure would 
be to use the fact that, at nodes xi, f(xi) = Pn(gj)4O(xj); when interpolating, we 
assume that the same relation holds, at least approximately, also at nonnodal points. 
At every node xi, we compute gi and Ji = f(xj)/40(xi). Then, implicitly or explicitly, 
we construct the algebraic polynomial Pn(g) such that P"(g1) = .i; then we assume 
that, at any nonnodal point x, Pn(g(x)) = f(x) = f(x)/4O(x). For the given x, we 
compute g(x) and evaluate Pn(g) for this argument, using any reputable form of 
polynomial interpolation. This yields an interpolated value for J(x), which must be 
multiplied by 40,(x) to yield the interpolated value of f(x). This procedure, which is 
mathematically equivalent to the construction and evaluation of Ln(x), will generally 
be considered computationally preferable when pointwise interpolation is all that is 
required. The user can apply the efficient and well-understood algorithms for poly- 
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nomial interpolation; he only needs to pre-edit the data and post-edit the output. 
It is also possible to write generalized algorithms of this type for osculatory and 

other confluent cases; however, we do encounter difficulties which do not arise in 
the distinct-node case. We will investigate here only the Taylor-series analog, in 
which the function f(x) is specified by its ordinate and successive derivatives at a 
single node xl. The product form of (3) is replaced by 

(3') 7rk(X) = (g(x) - g(xi))kOO(x). 

L*(x) is defined as that linear combination of o, 01, ..., + ,. which matches 
derivatives through the kth with f(x) at xl. It is defined as in (4), except that 

(4') bk = (f(k+') - L + 
)(x1))1r(k+1)(x1). 

The denominator in (4') simplifies to (k + l)!g"'k+(x1)kc(x1), but we have no simple 
way, in general, of evaluating the (k + 1)th derivative of L4 at xl. There will be cases 
where this is a trivial problem, as when g(x), 40(x), a,, , ; are chosen to yield a sine or 
cosine series, but there appears to be no simple way of proceeding in the absence of 
such special information. A more serious objection is that the algorithm may fail to 
solve solvable problems of confluent type. For instance, it is a well-posed problem to 
construct a cosine series approximation to an even function whose Maclaurin 
expansion is known; however, the expression (4') would be undefined because 
g(x) = 2 cos x and g'(O) = 0. It is possible to bypass this difficulty by writing 
00(x) = I, g(x) = 2 sin (x/2). This generates an expansion in the space of 1, sin (x/2), 
cos x, sin (3x/2), cos 2x, * * *, and since all odd-order derivatives of the function are 
zero, so will all coefficients of the sine terms be zero, and we therefore have the 
required cosine expansion. 

It may be noted that when 40(x) 1, the confluent form of our algorithm is 
mathematically equivalent to the BUrmann series [2, p. 25], although the computa- 
tional pattern has --been simplified and made more adaptable for automatic 
computation. 

In summary, it seems that, in the discrete-node case, we can achieve a high level 
of versatility without great degradation of performance. This versatility should be 
valuable in situations where some searching or experimentation is needed before 
deciding on the exact form of interpolant. Where confluent cases are concerned, the 
coverage is less good, and ad hoc remedies are sometimes needed; nevertheless, there 
are probably useful applications in this area too. 
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